메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최성필 (한국과학기술정보연구원) 최윤수 (한국과학기술정보연구원) 정창후 (한국과학기술정보연구원) 맹성현 (한국과학기술원)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제15권 제12호
발행연도
2009.12
수록면
988 - 992 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 합성곱 구문 트리 커널(convolution parse tree kernel)과, 한 문장에서 나타나는 두 개체 간의 관계를 가장 잘 설명하는 동사 상당어구에 대한 개념화를 통해 생성되는 워드넷 신셋 벡터(WordNet synsets vector) 커널을 활용하여 과학기술분야 전문용어 간의 관계 추출을 시도하였다. 본 논문에서 적용한 모델의 성능평가를 위해서 세 가지 검증 컬렉션을 활용하였으며, 각각의 컬렉션 마다 기존의 접근 방법론 보다 우수한 성능을 보여주었다. 특히 KREC 2008 컬렉션을 대상으로 한 성능실험에서는, 기존의 합성곱 구문 트리 커널과 동사 신셋 벡터(verb synsets vector)를 함께 적용한 합성 커널이 비교적 높은 성능 향상(8% F1)을 나타내고 있다. 이는 성능을 높이기 위해서 관계 추출에서 많이 활용하였던 개체 자질 정보와 더불어 개체 주변에 존재하는 주변 문맥 정보(동사 및 동사 상당어구)도 매우 유용한 정보임을 입증하고 있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 커널기반 관계추출 모델
4. 실험 및 토의
5. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001625271