메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김광백 (신라대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제15권 제2호
발행연도
2009.6
수록면
49 - 59 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
내용기반 이미지 검색은 색상, 질감 등의 이미지 자체의 자질들을 이용하여 검색하므로 텍스트 기반 이미지 검색의 객관성 부족과 모든 이미지에 사람이 주석을 달아야 하는 단점을 보완할 수 있는 이미지 검색 방법이다. 이러한 내용 기반 이미지 검색에서 사용되는 방식 중 SIM(Self-organizing Image browsing Map) 방식은 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑하고 그 결과를 바탕으로 이미지를 검색하게 된다. 하지만 비슷한 이미지라 할지라도 이미지의 밝기, 피사체의 움직임 등에 의하여 색상 정보가 다르게 나타나게 되면 SOM 알고리즘의 학습 과정에서 유사한 이미지들을 그룹화한 노드를 BMU로 선택하지 못하고 떨어져 있는 다른 노드를 선택하게 된다. 이 경우 학습이 진행되면서 유사한 이미지들이 군집하는 과정을 거치지만 학습이 완료될 때까지 다른 유사 이미지들을 그룹화한 노드에 맵핑이 되지 못하는 경우가 발생한다. 그 결과, 검색 결과에 나타나지 못하여 적합 이미지 검색률이 낮아 질 수 있다. 따라서 본 논문에서는 HSV 색상모델을 이용하여 양자화하고 이미지의 색상 특징 벡터를 추출한 뒤 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑한다. 이때 SIM 방식의 문제점인 유사 이미지가 따로 맵핑되어 적합 이미지 검색률이 낮아지는 것을 줄이기 위하여 SOM을 두 개의 층으로 구성한다. 첫 번째층에서 이미지의 색상 자질을 이용하여 학습을 완료한 후, 학습이 완료된 첫 번째 층 맵의 각 노드들의 연결 가중치를 이용하여 두 번째 층에서 다시 한번 학습을 수행한다. 두 개의 층으로 학습이 완료된 두 번째 층의 SOM에 질의 이미지의 특징 벡터를 입력하여 BMU를 선택하고 BMU와 연결된 첫 번째 층의 노드를 최종 선택하여 이미지를 검색한다. 실험결과, 제안된 이미지 검색 방법이 기존의 이미지 검색 방법 보다 적합 이미지의 검색 성공률이 높은 것을 확인할 수 있었다.

목차

1. 서론
2. 이미지 자질 추출
3. SOM 알고리즘을 이용한 이미지 분류
4. 개선된 SIM 방법에 의한 이미지 검색
5. 실험 및 결과분석
6. 결론
참고문헌
Abstract
저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-003-001907964