메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국무역학회 무역학회지 貿易學會誌 第29卷 第2號
발행연도
2004.4
수록면
5 - 30 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this paper is to investigate the extent to which technological knowledge that is created in five industrial countries influences through the trade flows on the growth of labor productivity at the manufacturing industry level of Korea. The four dynamic models are differentiated according to the channel of knowledge spillovers as well as the level of import penetration and industrial openness and specified by allowing a short-run and long-run impact of knowledge spillovers on the labor productivity. The models are estimated by using the panel data sets over the period 1992-1998 for total manufacturing industries as well as industry specific sectors that are disaggregated at the two-digit level of ISIC revision 3 and by adopting the general method of moments technique and instrumental variable approach.
The empirical results are as follows: The first, it is found that foreign technological knowledge have the relatively strong impact on the growth of labor productivity in the industries that exports are given much more weight and the openness levels are higher. In the case of industries that have much more weight in relying on the domestic market and maintain the lower level of openness, it is shown that the impact of foreign knowledge spillovers on the growth of labor productivity is significant if it is interacted with the openness industrial policy of government. The second, it is found that the magnitude of foreign knowledge spillovers has no significant relationship on the growth of labor productivity in the labor and capital intensive industries.

목차

Ⅰ. 서론
Ⅱ. 지식확산과 생산성에 관한 선행연구 고찰
Ⅲ. 이론적 모형
Ⅳ. 자료 및 추정모형
Ⅴ. 실증분석 결과
Ⅵ. 결론
참고문헌
〈부표〉
ABSTRACT

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-326-002880960