메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도형 (한국에너지기술연구원) 김창석 (공주대학교) 경남호 (한국에너지기술연구원)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제30권 제3호
발행연도
2010.6
수록면
65 - 70 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As for the present wind power industry, most of the computerization for monitoring and control is based on the traditional development methodology, but it is necessary to improve SCADA system since it has a phenomenon of backlog accumulation in the applicable aspect of back-data as well as in the operational aspect in the future. Especially for a system like offshore wind power where a superintendent cannot reside, it is desirable to operate a remote control system. Therefore, it is essential to establish a monitoring system with appropriate control and monitoring inevitably premised on the integrity and independence of data. As a result, a study was carried out on the modeling of offshore wind power data-centered database.
In this paper, a logical data modeling method was proposed and designed to establish the database of offshore wind power. In order for designing the logical data modeling of an offshore wind power system, this study carried out an analysis of design elements for the database of offshore wind power and described considerations and problems as well. Through a comparative analysis of the final database of the newly-designed off-shore wind power system against the existing SCADA System, this study proposed a new direction to bring about progress toward a smart wind power system, showing a possibility of a service-oriented smart wind power system, such as future prediction, hindrance-cause examination and fault analyses, through the database integrating various control signals, geographical information and data about surrounding environments.

목차

Abstract
1. 서론
2. 해상풍력 시스템
3. 해상풍력 데이터베이스 설계
4. 비교 분석
5. 결론
후기
참고문헌

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-563-002448516