메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
나문성 (한국콘텐츠진흥원) 이재동 (단국대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제3호
발행연도
2010.3
수록면
475 - 486 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
콘텐츠 추천 시스템은 콘텐츠에 대한 사용자의 선호도를 예측하고, 예측된 선호도가 높은 콘텐츠를 추천하는 시스템을 말한다. 디지털 식별자는 디지털 네트워크 환경에서 추상적인 작품(Work)이나 디지털 형태로 제작된 콘텐츠 등을 식별하는 역할을 한다. 디지털 식별자는 콘텐츠 추천 시스템에서 주로 이용되는 내용기반여과 기법과 협업여과 기법에서 효과적으로 활용될 수 있다. 본 논문에서는 UCI 국가표준 디지털 식별자를 대규모 콘텐츠 추천 분야에 효과적으로 활용할 수 있도록 기존 UCI 메타데이터를 확장하고 변환서비스를 개선하는 방안을 제시한다. UCI 메타데이터의 개선은 콘텐츠 추천에 필요한 요약, 키워드, 장르, 연령구분, 평점, 리뷰 항목을 추가하는 것이며, 변환서비스의 개선은 결과페이지에 콘텐츠에 대한 선호도 정보를 입력 하는 부분을 포함함으로써 콘텐츠에 대한 선호도 정보를 수집할 수 있도록 하는 것이다. 개선된 UCI를 운용하는 시스템을 설계하고 구현함으로써 본 논문에서 제안한 개선 방안이 콘텐츠 추천에 활용될 수 있음을 보인다.

목차

요약
ABSTRACT
1. 서론
2. 관련연구
3. 대규모 콘텐츠 추천을 위한 UCI 식별체계 개선 방안
4. 개선된 UCI 메타데이터를 이용한 운용시스템 설계 및 구현
5. 결론 및 향후 연구방향
참고문헌

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004443557