메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xin Su (조선대학교) Dongmin Choi (조선대학교) Sangman Moh (조선대학교) Ilyong Chung (조선대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 JOURNAL OF KOREA MULTIMEDIA SOCIETY Vol.13 No.6
발행연도
2010.6
수록면
911 - 923 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORK
3. THE DEPLOYMENT MODEL AND ENERGY MODEL
4. THE PROPOSED SCHEME
5. DAEEC WITH THRESHOLD (THDAEEC)
6. PERFORMANCE ANALYSIS
7. CONCLUSION
REFERENCE

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004438312