메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunghoon Jung (부산대학교) Dowon Jang (부산대학교) Minhwan Kim (부산대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 JOURNAL OF KOREA MULTIMEDIA SOCIETY Vol.11 No.12
발행연도
2008.12
수록면
1,658 - 1,667 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reconstruction of 3D objects from a single view image is generally an ill-posed problem because of the projection distortion. A monocular vision based 3D object localization method is proposed in this paper, which approximates an object on the ground to a simple bounding solid and works automatically without any prior information about the object. A spherical or cylindrical object determined based on a circularity measure is approximated to a bounding cylinder, while the other general free-shaped objects to a bounding box or a bounding cylinder appropriately. For a general object, its silhouette on the ground is first computed by back-projecting its projected image in image plane onto the ground plane and then a base rectangle on the ground is determined by using the intuition that touched parts of the object on the ground should appear at lower part of the silhouette. The base rectangle is adjusted and extended until a derived bounding box from it can enclose the general object sufficiently. Height of the bounding box is also determined enough to enclose the general object. When the general object looks like a round-shaped object, a bounding cylinder that encloses the bounding box minimally is selected instead of the bounding box. A bounding solid can be utilized to localize a 3D object on the ground and to roughly estimate its volume. Usefulness of our approach is presented with experimental results on real image objects and limitations of our approach are discussed.

목차

ABSTRACT
1. INTRODUCTION
2. APPROACH TO PROBLEM SOLVING
3. CONSTRUCTION OF 3D BOUNDING SOLIDS
4. EXPERIMENTAL RESULTS AND DISCUSSIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004431782