메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이세일 (공주대학교) 이상용 (공주대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제21권 제2호
발행연도
2011.4
수록면
224 - 229 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력적 필터링은 잠재적인 항목을 추천할 수 있어서 추천시스템에 가장 많이 사용되고 있다. 그러나 협력적 필터링은 평가 항목이 적을 경우, 평가자의 상황이나 기분에 따라 유사도나 선호도에 큰 영향을 끼칠 수 있다. 또한 사용자의 현재 상황을 전혀 고려하지 않고 과거에 평가한 항목만으로 유사도를 계산하여 추천하여 추천의 정확도가 떨어지게 된다.
본 논문에서는 위와 같은 문제점을 해결하기 위해, 먼저 협력적 필터링 과정을 수행하기 전 사용자들이 평가한 모든 값을 비교하지 않고 평균 이상인 사용자들만을 비교하여 유사도를 계산함으로써 추천의 정확성을 높였다. 또한 끊임없이 변화하는 유비쿼터스 컴퓨팅 환경에서 사용자의 평가 항목만으로 서비스 정보를 추천하는 것이 적합하지 않기 때문에, 사용자의 실시간 컨텍스트 정보를 이용하여 비슷한 사용자들에게 높은 가중치를 적용하여 유사도를 구하는 방법을 사용하였다. 이러한 방법을 사용한 결과, 추천의 정확도가 평균적으로 16.2% 향상되었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 컨텍스트 기반 추천 시스템
4. 실험 및 평가
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-028-000584124