메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임신철 (세종대학교) 장세진 (전자부품연구원) 이석필 (전자부품연구원) 김무영 (세종대학교)
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第48卷 SC編 第5號
발행연도
2011.9
수록면
31 - 36 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), 그리고 Spectral Contract/Roll-Off를 복합 특징벡터로 결합하여 Support Vector Machine (SVM)을 이용한 음악 장르 분류 시스템을 설계하였다. 기존 방식에서는 전체 학습 데이터에 대한 특징벡터를 정규화를 한 후 SVM 모델을 생성하여 분류를 시행하였다. 본 논문에서는 비교 대상이 되는 한 쌍의 클래스에 대해서 One-Against-One (OAO) SVM으로 모델을 생성할 때 선택된 두 클래스의 특징벡터에 대해서만 정규화를 시행하는 방식을 제안한다. 기존 정규화 방식을 이용하면 단일 특징벡터로 OSC를 사용할 경우에는 60.8%, 복합 특징벡터를 모두 이용하는 경우에는 77.4%의 인식율을 얻을 수 있었다. 또한, 제안된 정규화 방식을 이용하면 OSC와 복합 특징벡터에 대해서 각각 8.2%와 3.3%의 추가적인 성능 향상을 얻을 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000772191