메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정하욱 (서울대학교) 장형진 (서울대학교) 최진영 (서울대학교)
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第48卷 SC編 第5號
발행연도
2011.9
수록면
45 - 51 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 비교사학습법을 통해 영상의 방대한 정보를 효율적으로 모델링 하는 방법을 제안하고자 한다. 여기서 이동궤적들은 자연어 처리에 사용되는 알고리즘인 잠재 디리클레 할당 모형(Latent Dirichlet Allocation)에 의해 직진, 좌회전, 우회전등 각 상황 별로 주제에 따라 그 영역을 효과적으로 분류할 수 있다. LDA를 이용해 주제별로 의미 있는 영역을 분류한 후, 각 주제별로 분류된 궤적을 관측열로 보고 은닉 마르코프 모델(Hidden Markov Model)의 바움-웰치 알고리즘을 사용하여 학습한다. 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 비교함으로써 영상내의 행동이 정상인지 비정상인지를 효과적으로 판단할 수 있다. 실험결과 다양한 영상에 대해 의미있는 주제별로 영역이 잘 분류되며 추적에러로 인한 궤적의 노이즈에도 강인하게 물체의 무단횡단, 신호위반과 같은 상황을 효과적으로 탐지하는 것을 확인할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000772217