메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임태경 (경북대학교) 이동은 (경북대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第27卷 第11號
발행연도
2011.11
수록면
143 - 150 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper introduces a system called Stochastic Markup Estimation System (SME) for estimating optimum markup for a project. The system was designed and implemented to better represent the real world system involved in construction bidding. The findings obtained from the analysis of existing assumptions used in the previous quantitative markup estimation methods were incorporated to improve the accuracy and predictability of the SME. The existing methods have four categories of assumption as follows; (1) The number of competitors and name of the competitors are known, (2) A typical competitor, who is fictitious, is assumed for easy computation, (3) the ratio of bid price against cost estimate (B/C) is assumed to follow normal distribution, (4) the deterministic output obtained from the probabilistic equation of existing models is assumed to be acceptable. However, these assumptions compromise the accuracy of prediction. In practice, the bidding patterns of the bidders are randomized in competitive bidding. To complement the lack of accuracy resulted from these assumptions, bidding project was randomly selected from the pool of bidding database in the simulation experiment. The probability to win the bid in the competitive bidding was computed using the profile of the competitors appeared in the selected bidding project record. The expected profit and probability to win the bid was calculated by selecting a bidding record randomly in an iteration of the simulation experiment under the assumption that the bidding pattern retained in historical bidding DB manifest revival. The existing computation, which is handled by means of deterministic procedure, were converted into stochastic model using simulation modeling and analysis technique as follows; (1) estimating the probability distribution functions of competitors’ B/C which were obtained from historical bidding DB, (2) analyzing the sensitivity against the increment of markup using normal distribution and actual probability distribution estimated by distribution fitting, (3) estimating the maximum expected profit and optimum markup range. In the case study, the best fitted probability distribution function was estimated using the historical bidding DB retaining the competitors’ bidding behavior so that the reliability was improved by estimating the output obtained from simulation experiment.

목차

Abstract
1. 서론
2. 문헌고찰
3. 방법론
4. 사례연구
5. 투찰전략 시스템 프로토타입 개발
6. 결론 및 한계점
참고문헌

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-540-001053649