메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Manjung Seo (숭실대학교) Sungbin Im (숭실대학교)
저널정보
대한전자공학회 ITC-CSCC :International Technical Conference on Circuits Systems, Computers and Communications ITC-CSCC : 2008
발행연도
2008.7
수록면
1,657 - 1,660 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reliable channel modeling becomes an important measure in performance evaluation on various data detection algorithms. For this reason, correct and accurate modeling is required. This paper presents a nonlinear modeling of Super-RENS (Super-Resolution Near Field Structure) read-out signal using the second-order Volterra and neural network models. The experiment results verified the possibility that Volterra and neural network models can be utilized for nonlinear modeling of Super-RENS systems. Furthermore, nonlinear equalizers can be developed based on the information obtained from this nonlinear modeling.

목차

Abstract
1. Introduction
2. The Volterra Model
3. The NARX Model
4. Experiment and Results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001142666