메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Myeonggi Gwak (한양대학교) Kichun Jo (한양대학교) Myoungho Sunwoo (한양대학교)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2011년 한국자동차공학회 학술대회 및 전시회
발행연도
2011.11
수록면
45 - 48 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The vehicle positioning system is an essential component for developing an autonomous vehicle. Highly accurate and reliable position has to be updated frequently for driving a vehicle autonomously. However, for positioning the vehicle based on a global positioning system (GPS) alone is not accurate due to the GPS blockage and a multipath error. In order to overcome this problem, the sensor fusion of the position data from GPS with in-vehicle sensors has been used widely. In general, a single model filter is frequently used for proper positioning of the vehicle, but it is not suitable for various driving conditions. For this reason, a multiple-model filter has been studied to apply in a wide-range of driving conditions. The multiple-model filter can apply in various conditions because it combines several models using the model probability. In this study, we proposed a neural network based multiple-model filter using the GPS with in-vehicle sensors. The model probability can be obtained by using the off-line learning of the neural network. The proposed multiple-model filter was verified by simulation using a commercial vehicle model. The simulation results show that the proposed multiple-model filter is capable of adapting to various driving conditions.

목차

Abstract
1. INTRODUCTION
2. VEHICLE MODELS
3. MULTIPLE-MODEL FILTER
4. SIMULATION
5. CONCLUSION
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-556-001412160