메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오수영 (솔트룩스) 오연희 (KBS) 한성희 (KBS) 김희정 (KBS)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제17권 제1호
발행연도
2012.1
수록면
129 - 139 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 방송 콘텐츠를 소비한 사용자의 소비이력 정보를 바탕으로 추천해 주는 시스템을 소개한다. 방송 콘텐츠는 도서, 음반, 영화 등의 콘텐츠와는 다른 구조로 구성되어 있으며, 크게 시리즈물과 에피소드물로 나뉜다. 시리즈물은 여러 개의 방송 콘텐츠가 하나의 프로그램을 구성하고 하나의 주제나 스토리를 다룬다. 반면에 에피소드물은 여러 개의 방송 콘텐츠가 하나의 프로그램을 구성하지만 각각의 콘텐츠 별로 다른 주제나 스토리를 다룬다. 시리즈물인 경우에는 프로그램 단위로 추천이 가능하고, 에피소드물인 경우에는 하나의 프로그램을 구성하는 콘텐츠들이 독립된 콘텐츠로서 추천이 가능하다. 이와 같은 방송콘텐츠의 특징에 따라, 본 논문에서는 시리즈물과 에피소드물로 추천단위를 달리하여 콘텐츠를 추천한다. 콘텐츠 추천은 사용자의 방송 콘텐츠 소비이력 정보를 활용하여 방송 콘텐츠간의 유사도를 도출하고 이를 토대로 추천을 제공한다. 방송 콘텐츠간의 유사도는 협업 필터링 알고리즘을 사용하여 계산한다. 추천 시스템은 희소 배열 자료구조를 사용하며, 메모리 기반의 연산을 수행하여 추천 콘텐츠를 색인 구조로 저장한다. 저장된 색인은 추천 시스템에서 제공하는 오픈 API를 통해 서비스되며, 오픈 API는 HTTP 프로토콜을 기반으로 구현되었다. 마지막으로 추천시스템 구현과 실험을 위한 웹 데모를 소개한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 사용자 이력기반 콘텐츠 추천
Ⅳ. 구현
Ⅴ. 결론
참고문헌

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-568-001270266