메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 대한인간공학회 2011 춘계학술대회 및 워크샵
발행연도
2011.5
수록면
359 - 363 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The purpose of this study is to identify optimal algorithm for emotion recognition which classify three different emotional states (happiness, neutral, and surprise) using physiological features. Background: Recent emotion recognition studies have tried to detect human emotion by using physiological signals. It is important for emotion reconition to apply on human-computer interaction system for emotion detection. Method: 217 students participated in this experiment. During three different emotional stimuli are presented to participants, ANS responses(EDA, SKT, ECG, Respiration, and PPG) as physiological signals were measured for 1 minute as baseline and for 1-1.5 minutes during emotional state. The obtained signals were analyzed for 30 seconds from the baseline and the emotional state. Participants assessed the induced emotion on emotional assessment scale after emotional stimuli presentation. Analysis for emotion classification were done by linear discriminant analysis (SPSS 15.0), Support Vector Machine (SVM), and Multilayer perceptron (MLP) using substracting baseline values from the emotional state. Results: The emotional stimuli had 96% validity and 5.8 effectiveness on average. The result of linear discriminant analysis using physiological signals showed that an accuracy of three different emotions classification was 83.4%. And an accuracy of three emotions classification by SVM was 75.5% and 55.6% by MLP. Conclusion: This study identified that three emotions were classified by linear discriminant analysis using various physiological features. Future study is needed to obtain stability and reliablity of this result compare with accuracy of emotion classification using other algorithms. Application: This could help emotion recognition studies lead to better chance to recognize various human emotions by using physiological signals as well as is able to be applied on human-computer interaction system for emotion reecognition.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
Acknowledgements
References
Author listings

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-530-001644704