메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seungwoo Hong (Korea University) Jaekyu Park (Korea University) Youngjae Lim (Korea University) Eui S. Jung (Korea University)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 대한인간공학회 2012 30주년 기념 춘계학술대회 제 14회 한·일 공동심포지엄
발행연도
2012.5
수록면
184 - 189 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The aim of this study is to analyze case of ergonomic evaluation using data mining techniques. Background: It is important to discover the hidden trends and patterns in large data. Data mining model is composed of four fundamental categories which are classification, clustering, combination and continuity. Decision Tree is to model the relationships that exist in data and find the rules from the relationships. Self-organizing feature map (SOFM) is a type of artificial neural network that is trained using unsupervised learning to produce two-dimensional, discretized representation of the input space of the training samples. Method: It is to evaluate perceived discomfort of working postures in terms of upper body when an external load varies. Eighteen subjects participated in an experiment of appraising perceived discomfort of varying upper body postures with three levels of external loads given. Results: The ANOVA results showed that the perceived discomfort of upper body postures was significantly affected by external load and upper body posture were significant. Also, it is able to understand the most affected variable and extract the rules on relationships between external load and joint angle of human body. In addition, working postures of upper body with respect to perceived discomfort are divided into eight groups using SOFM. Conclusion: It is need to use data mining techniques to analyze ergonomic evaluation data because it is possible to apply various cases of ergonomics.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
References
Author listings

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0