메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
YoungOk Kwon (Sookmyung Women"s University)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2012년 춘계학술대회
발행연도
2012.5
수록면
95 - 102 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Various recommendation algorithms have been developed to improve the accuracy of recommendations; however, the diversity of recommendations has often been overlooked. Intuitively, it may be possible to achieve improvements in one of these two metrics at the expense of the other. For example, higher accuracy may sometimes be obtained by safely recommending to users the most popular items, which can lead to the reduction in aggregate recommendation diversity, i.e., less personalized recommendations. Conversely, higher diversity can be achieved by trying to uncover and recommend highly personalized items for each user, which are inherently more difficult to predict and, thus, may lead to a decrease in recommendation accuracy. To overcome this accuracy-diversity tradeoff, this work builds on the following two ideas: incorporating multi-criteria rating information and applying different ranking methods. Experiments using movie rating data empirically demonstrate simultaneous improvements in accuracy and diversity.

목차

Abstract
Introduction and Motivation
Related Work
New Approaches For Accuracy and Diversity
Empirical Results
Conclusions and Future Work
Acknowledgments
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0