메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
남종오 (한국해양수산개발원) 노승국 (한국해양수산개발원) 박은영 (한국해양수산개발원)
저널정보
한국해양수산개발원 해양정책연구 해양정책연구 제27권 제1호
발행연도
2012.6
수록면
65 - 94 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper forecasts one-month ahead price of the real landing price of the Korean oyster farmed with high price fluctuations by month. To forecast the one-month ahead real landing price of the farmed oyster, this paper uses monthly data (128 observations) from January 2001 to August 2011 and also adopts several econometrics methods such as the multiple regression model, the autoregressive integrated moving average model, and the vector autoregression model.
As a result, the one-month ahead real landing price of the oyster forecasted by the multiple regression model had relatively lower prediction error than ones of ARIMA(2,0,0) and VAR models.
Particularly, first, the one-month ahead real landing price of the oyster forecasted by the multiple regression model was 4,907 won per kg with prediction error of about 1.21 won.
Second, the one-month ahead price of the ARIMA(2,0,0) model was forecasted as 4,652.13 won per kg with prediction error of approximately 257 won.
Third, the one-month ahead price of oyster based on the VAR model was estimated as 4,386.43 won per kg with prediction error of 522.57 won. However, basing on root mean squared error, mean absolute error, mean absolute percentage error, and Theil inequality coefficient, the one-month ahead price of oyster by the VAR model was fitter than one by the ARIMA(2,0,0) and multiple regression models.
In conclusion, this paper suggests that out-of-sample forecasts as 12 months ahead need in order to find the best model among the three models.

목차

Abstract
Ⅰ. 서론
Ⅱ. 굴 양식 현황 분석
Ⅲ. 예측모형 및 실증분석
Ⅳ. 요약 및 결론
참고문헌

참고문헌 (26)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-454-003358219