메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정의철 (인하대학교) 김서준 (인하대학교) 송영록 (인하대학교) 이상민 (인하대학교)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제6권 제1호
발행연도
2012.6
수록면
67 - 74 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 표면 근전도 신호를 사용하여 손목 움직임의 동작을 분류하기 위해 인공 신경 회로망(ANN : Artificial Neural Network)기반의 동작 분류 알고리즘을 제안한다. 손목 움직임에 무리가 없는 20~30대 성인 26명을 대상으로 척측 수근 굴근과 척측 수근 신근에 부착한 2채널의 전극으로부터 표면 근전도 신호를 취득하고, 취득한 근전도로부터 손목의 굴곡, 신전, 내전, 외전, 휴식 다섯 동작을 인식한다. 빠른 처리 속도를 위해 획득한 신호로부터 시간 영역에서의 특징점을 추출하고 ANN을 이용한 동작 분류에 사용된다. 특징점으로 DAMV, DASDV, MAV, RMS를 사용하였으며, ANN 기반의 동작 분류의 인식율은 DAMV는 98.03%, DASDV는 97.97%, MAV는 96.95%, 그리고 RMS는 96.82%의 정확도를 나타낸다.

목차

요약
ABSTRACT
1. 서론
2. ANN 기반의 동작 분류 알고리즘
3. 실험 및 결과
4. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-512-003196665