메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최윤수 (한국과학기술정보연구원) 이원구 (한국과학기술정보연구원) 이민호 (한국과학기술정보연구원) 최동훈 (한국과학기술정보연구원) 윤화묵 (한국과학기술정보연구원) 송사광 (한국과학기술정보연구원) 정한민 (과학기술연합대학원대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제12권 제10호
발행연도
2012.10
수록면
1 - 10 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
과학기술 문헌의 전문용어 인식 분야는 지금까지 다양한 통계적 방법론을 사용하여 용어 인식 정확률을 향상시키기 위하여 연구되어 왔다. 하지만 기존의 연구는 단일-코어 또는 단일 머신 상에서 수행되었기 때문에, 폭발적으로 증가하는 문헌들에 대한 실시간 분석 요구를 처리할 수 없는 상황에 직면하고 있다. 본 논문에서는 전문용어를 인식하는 과정에서 병목현상이 발생하는 작업을 ‘후보용어 추출 과정’의 언어처리 부분과 ‘용어 가중치 할당 과정’에서 통계정보를 취합하는 부분으로 분류하고, 각 작업을 분산병렬 처리 기반의 맵리듀스 작업을 이용하여 해결하는 전문용어 인식 방법을 구현하고 실험하였다. 실험은 확장성과 분산 병렬 처리 환경 최적화 두 가지로 수행하였고, 첫 번째 실험에서 12개의 노드를 사용하여 분산 병렬 처리하였을 때 단일 머신을 사용한 경우보다 11.27배의 처리속도 향상을 보였다. 두 번째 실험에서 1)기본 환경, 2)복수 리듀서, 3)컴바이너, 4) 2)와3)의 조합에 대하여 수행하였고, 3)컴바이너 사용이 가장 우수한 성능을 보여 주었다. 본 논문에서 구현된 전문용어 인식 시스템은 대용량 과학기술 문헌에 대한 지식 추출 작업속도 개선에 기여하였다.

목차

요약
Abstract
I. 서론
II. 관련연구
III. 하둡 기반 전문용어 인식 시스템
IV. 실험
V. 결론
참고문헌

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-004-001106711