메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mai Van Sy (Hanoi University of Technology) Phan Xuan Minh (Hanoi University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
632 - 637 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper we present the nonlinear model predictive control based on the Takagi-Sugeno fuzzy model. The paper is divided into two parts. The first part focuses on the fuzzy model-identification, in which we employ the Takagi-Sugeno fuzzy model - a powerful structure for representing nonlinear dynamic systems. The second part emphasizes on the objective function optimization by using the Branch and Bound method (B&B) and Genetic Algorithm (GAs). Two methods were used as constrained optimizers to online plan optimal input policies over a defined prediction horizon basing on the identified fuzzy model. To reduce computational effort, we combine B&B with Dynamic Grid Size method and GAs with Fuzzy Adaptive Interval. Both developed methods are programmed and tested to control the liquid level of two tanks system which has hard nonlinearity and long delay time. Simulation results show that the proposed methods are successfully applied to nonlinear systems. Some comparisons about “ptima”solutions and time executions are discussed.

목차

Abstract
1. INTRODUCTION
2. FUZZY MODEL PREDICTIVE CONTROL
3. BRANCH AND BOUND METHOD
4. GENETIC ALGORITHM
5. SIMULATION RESULTS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000983494