메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hiroki Takahashi (Kyushu Institute of Technology) Masafumi Komatsu (Kyushu Institute of Technology) Hyoungseop Kim (Kyushu Institute of Technology) Joo Kooi Tan (Kyushu Institute of Technology) Seiji Ishikawa (Kyushu Institute of Technology) Akiyoshi Yamamoto (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
2,074 - 2,077 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, multi detector row computed tomography (MDCT) has been introduced into medical fields. By the development of MDCT, images with high quality are provided into medical fields. So many related image processing techniques are proposed into medical image processing fields for extraction of abnormal area. In the medical image processing field, segmentation is one of the most important problems for analyzing the abnormalities and recognition of internal structures before the operation. For this reason, many approaches are proposed for detection of abnormal area on CT images. Before detection of abnormal areas, segmentation of organs in CT images is one of the most important problems for analyzing of disease. However, poor contrast, image noises and motion artifacts make this segmentation problem difficult in particular in cardiac region. Moreover, there are still no fully automatic segmentation methods for cardiac region on CT images. In this paper, we present automatic extraction technique for detection of cardiac region. Our proposed technique combines active shape model (ASM) and genetic algorithm (GA). We apply our proposed technique to five real CT images and satisfactory segmentation results are achieved.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. RESULTS
4. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000940911