메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
492 - 497 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the aim is to detect and isolate fault in complex plants by using hierarchy structure, independent component analysis (ICA) and data fusion methods. The hierarchy strategy is used to divide a system to some agents in order to reduce the complexity of the systems as well as increase the accuracy of fault detection and isolation process. The ICA is a statistical method which is used for data reduction and feature extraction from original features. The ICA statistics I², I<SUB>e</SUB>² and SPE are proposed as on-line fault detecting strategy. Contribution plots of these statistics are used for fault identification to trigger a fault diagnosis blocks in each subsystem. A data fusion method is used to combine features in intelligent ways so as to obtain the best possible diagnostic information. In this level adaptive neuro fuzzy inference system (ANFIS) is applied to fuse the extracted data. The basic idea of proposed structure is to trigger relevant fault diagnosis blocks based on the ICA statistics fault detection. The proposed structure also provides fault prediction capability. The predictability outcome was provided because fault was detected by agents with different delays. The simulation results clearly show the advantages of proposed structure to detect isolate and predict of a fault.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. ICA MONITORING
Ⅲ. FUSION ARCHITECTURE
Ⅳ. FDI STRUCTURE
Ⅴ. SIMULATION
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000912971