메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yong-Hoon Ji (Korea University) Jae-Bok Song (Korea University) Ji-Hoon Choi (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
684 - 687 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mobile robot localization is the task of estimating the robot pose in a given environment. Among many localization techniques, Monte Carlo localization (MCL) is known to be one of the most reliable methods for pose estimation of a mobile robot. However, as outdoor environments are large and contain many complex objects, it is difficult to robustly estimate the robot pose using MCL in outdoor environments. Therefore, this study proposes a novel approach, the Hausdorff distance-based matching method using the objects commonly observed from air and ground (COAG) features for outdoor MCL algorithm. The Hausdorff distance is exploited to measure the similarity between the COAG features extracted from the robot and the elevation map. The experimental results in real environments show that the success rate of outdoor MCL increases and the proposed method is useful for robust outdoor localization using an elevation map.

목차

Abstract
1. INTRODUCTION
2. MONTE CARLO LOCALIZATION (MCL)
3. COAG FEATURES
4. HAUSDORFF DISTANCE MATCHING
5. MCL-BASED LOCALIZATION USING HAUSDORFF DISTANCE
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000913347