메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Saori Iseya (The University of Electro-Communications) Keiji Sato (The University of Electro-Communications) Kiyohiko Hattori (The University of Electro-Communications) Keiki Takadama (The University of Electro-Communications)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
2,710 - 2,715 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes the optimization method which extends Pittsburg-style Learning Classifier System(LCS) for Pacific Ocean route. In detail, the following extensions are introduced:(1) the unrealistic route deletion, (2) the route integration, and (3) the route rest time minimization and the anchor order change. To investigate the effectiveness of the proposed methods, this paper applies them into LCS to optimize the Pacific Ocean liner route using the actual transportation data. The intensive simulations have revealed following indications: (1) the generated routes using the proposed methods can produce the feasible routes that are hard to be found by the conventional method; and (2) our proposed methods contribute to creating the effective route set which has the short rest time, a small number of vessels, and high profit.

목차

Abstract
1. INTRODUCTION
2. THE PITTSBURG-STYLE LEARNING CLASSIFIER SYSTEM
3. MODELING OF THE PACIFIC OCEAN ROUTE
4. EXTENDED LCS
5. SIMULATION
6. DISCUSSION
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000767241