메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mitsuhiro Tomosada (Central Research Institute of Electric Power Industry) Koji Kanefuji (The Institute of Statistical Mathematics) Yukio Matsumoto (Association of International Research Initiatives for Environmental Studies) Hiroe Tsubaki (The Institute of Statistical Mathematics)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
4,869 - 4,873 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We propose a method to generate a global distribution map of carbon dioxide (CO2) and methane (CH4)column abundance retrieved from spectra on irregular observation points by GOSAT (Greenhouse gases ObserbingSATellite). Global distribution map is gridded by 1 degree for latitude and longitude. Kriging in spatial statistics isapplied to the spatial data of CO2 and CH4 column abundance. We focus on CO2 density in this study, the distance anddifference of CO2 column abundances between observation points for sample pairs at each observation points overocean and over land on the earth’s surface are calculated. The relationship between the distance and the difference ofCO2 column abundances are represented by semi-variogram model. When semi-variogram is modeled, the difference ofsemi-variogram derived from the direction between observation points of sample pairs from North-pole direction isconsidered. And, we obtain the variogram model for each land cover. GOSAT was just launched, and CO2 columnabundance is not retrieved from spectra measured by GOSAT. Therefore, proposed method is applied to spatial data ofXCO2 instead of CO2 column abundance. We set the observation points on the earth’s surface based on the GOSATobservation plan. Global distribution map of XCO2 instead of CO2 column abundance is used, XCO2 value for eachobservation points are set. And we predict XCO2 values on the grid in global distribution map from the set observationpoints and XCO2. As a result, the standard deviation of prediction error (predicted value ? actual value) is 0.324. Thisstandard deviation, which is 0.1% of XCO2 value, is enough small comparison with target accuracy (1%).

목차

Abstract
1. INTRODUCTION
2. METHOD
3. APPLICATION
4. CONCLUSION
Acknowlegdement
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000761401