메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaeseung Lee (Dongeui University) Inchul Im (Dongeui University) Yunsik Yu (Dongeui University) Hyonghu Park (Bong-Seng Memorial Hospital) Byungjoon Kwak (Daegu Haany University)
저널정보
대한의생명과학회 대한의생명과학회지 대한의생명과학회지 제18권 제4호
발행연도
2012.12
수록면
399 - 405 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The brain is the body"s most organized and controlled organ, and it governs various psychological and mental functions. A brain abnormality could greatly affect one"s physical and mental abilities, and consequently one"s social life. Brain disorders can be broadly categorized into three main afflictions: stroke, brain tumor, and dementia. Among these, stroke is a common disease that occurs owing to a disorder in blood flow, and it is accompanied by a sudden loss of consciousness and motor paralysis. The main types of strokes are infarction and hemorrhage. The exact diagnosis and early treatment of an infarction are very important for the patient"s prognosis and for the determination of the treatment direction. In this study, texture features were analyzed in order to develop a prototype auto-diagnostic system for infarction using computer auto-diagnostic software. The analysis results indicate that of the six parameters measured, the average brightness, average contrast, flatness, and uniformity show a high cognition rate whereas the degree of skewness and entropy show a low cognition rate. On the basis of these results, it was suggested that a digital CT image obtained using the computer auto-diagnostic software can be used to provide valuable information for general CT image auto-detection and diagnosis for pre-reading. This system is highly advantageous because it can achieve early diagnosis of the disease and it can be used as supplementary data in image reading. Further, it is expected to enable accurate medical image detection and reduced diagnostic time in final-reading.

목차

서론
대상 및 방법
결과
고찰
REFERENCES

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-510-000614362