본 논문에서는 유동의 안정된 흐름 제어를 위한 유동제어에 대해 다룬다. 전산유체역학 해석을 통해 제공된 대용량의 유동 데이터를 POD 방법을 통하여 축약하고, 제어측면에서 시간 및 주파수 영역에서의 분석에 근거하여 적절한 수준의 저차 모델링한다. 한편, 유동장 표면에 부착된 압력센서로부터 공간상의 유동상태 추정을 위해 신경망 구조를 갖는 유동추정기를 구성하고, 되먹임 유동제어기를 설계함으로써 유동제어루프를 구성한다.
This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.