메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jangwoo Park (Korea University) Il Woo (Doosan) Shinsuk Park (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2012
발행연도
2012.10
수록면
1,869 - 1,873 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There are many input modalities for human-machine interface (HMI). Brain-signal that is one of biosignal has been studied as an input modality for HMI. Brain-signal based HMI can help disabled people to communicate with a machine using the brain’s electrical activity. this study is focuses on usability of the EEG-based HMI’s for available tools in real life and possibility of the EEG signal as input modality of multimodal interface. This study attempt to explore the electroencephalogram (EEG) signal measurement and analysis methods related to concentration for multimodal Interface. The experiments have been performed with various tasks, such as self-concentration, self-arithmetic (non-display), self-arithmetic (show display) and eye-closing. EEG signals are recorded while subjects perform each task on Fz, Cz, Pz. The receiver operating characteristic (ROC) curve analysis is to determine the threshold on each task. Rate of distinction range is 50.32% ~ 56.77% with the threshold about self-arithmetic and 71.67%~78.33% with the threshold about eye-closing. There are some meaningful results about threshold, self-arithmetic and eye-close activity. It can be used for brain-machine interface and multi-modal interface.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. ANALYSIS
4. RESULT
5. DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0