메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
민창선 (한국지엠) 한신 (한국지엠)
저널정보
한국자동차공학회 한국자동차공학회 춘계학술대회 2013 KSAE 부문 종합학술대회
발행연도
2013.5
수록면
1,006 - 1,015 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Brain-Computer Interface(BCI) System has been rapidly developed recently in the field of brain engineering. BCI is the system that can read and output user’s thought by analyzing brain waves and manipulate the connected machine. In this paper, I have researched driving simulation using EEG signal by implementing real time BCI system of TORCS and tried to introduce a new interface as well as optimize it.
First, I have determined electrodes that will be used as a control signal by analyzing the brain activation data gained through experimentation according to motor image. Then, I created a client to use as a control interface, and connected TORCS server and BCI2000 each using UDP communication to construct a real-time BCI system. BCI2000 receives the EEG data coming from the EEG measuring equipment and does overall processing of the EEG, then finally generates the control signals. After that, client send the command such as steering, acceleration of the vehicle to TORCS server based on the control signals, and car moves. Then artificial intelligence has been implanted in the client to form the basic model of shared-control system. And I inserted algorithm that can adjust and mediate the commands coming from each of the EEG and artificial intelligence to create improved shared-control model.
As a test result, improved model of shared control was faster than the base model and artificial intelligence in lap times and top speed except for track with severe curves. Also the test participants showed more smooth and easy driving in case of improved model.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안하는 방법
4. 실험 방법
5. 결과 및 고찰
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-550-002587802