메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김경진 (숭실대학교) 조남훈 (숭실대학교)
저널정보
한국비파괴검사학회 비파괴검사학회지 비파괴검사학회지 제30권 제4호
발행연도
2010.8
수록면
302 - 310 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 원자력 발전소 증기발생기 세관에 발생할 수 있는 결함의 크기측정에 사용되는 Bagging 신경회로망에 대한 연구를 수행하였다. Bagging은 부트스트랩(bootstrap) 샘플링에 기반을 둔 추정기 앙상블을 생성하는 방법이다. 증기발생기 세관의 결함 크기측정을 위하여 다양한 폭과 깊이를 갖는 4가지 결함패턴의 eddy current testing 신호를 생성하였다. 그 다음, 단일 신경회로망(single neural network; SNN)과 Bagging 신경회로망(Bagging neural network; BNN)을 구성하여 각 결함의 폭과 깊이를 추정하였다. SNN과 BNN 추정성능은 최대오차를 이용해서 측정하였다. 실험결과, 결함 깊이 추정시의 SNN과 BNN 최대오차는 0.117mm와 0.089mm 이었다. 또한, 결함 폭 추정 시에는 SNN과 BNN 최대오차는 0.494mm와 0.306mm 이었다. 이러한 실험결과는 BNN 추정성능이 SNN 추정성능보다 우수하다는 것을 보여준다.

목차

초록
Abstract
1. 서론
2. 축대칭 결함 및 특징 추출
3. 신경회로망의 구조와 일반화 성능
4. Bagging
5. 컴퓨터 모의실험
6. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-500-003179193