메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이기석 (서울대학교) 김은솔 (서울대학교) Karinne Ramirez Amaro (뮌헨공과대학교) Michael Beetz (뮌헨공과대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제19권 제8호
발행연도
2013.8
수록면
434 - 438 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
기계학습(machine learning) 기술을 이용해서 영상 데이터로부터 동작 패턴을 인식하는 연구에 있어서, 최근 들어 무감독학습(unsupervised learning)의 중요성이 부각되고 있다. 본 논문에서는 ISA (Independent Subspace Analysis) 알고리즘에 기반한 최신 무감독학습 기법인 ‘Stacked Convolutional ISA’ 알고리즘[1]을 이용해서 샌드위치를 만드는 인간의 동작을 촬영한 영상 데이터를 분석, 동작 인식을 행하였다. 데이터로부터 직접 유용한 특징들을 학습하는 무감독학습 기법의 장점을 그대로 나타내어, 해당 알고리즘은 제한적인 학습 및 테스트 샘플 조건 하에서도 인상적인 성능을 나타냈다. 반면 요리동작에 있어서는 손동작 자체를 인식하는 것 이외에도 현재 손에 쥐어진 도구나 재료의 종류를 인식하는 것이 중요한데, 이러한 문맥 인식(context recognition)은 향후 추가적으로 연구해야 할 과제로 남아있다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 요리 동작 영상 데이터
4. ISA 기반 요리 동작 인식
5. 실험 결과 및 분석
6. 결론 및 향후 연구
References

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002912947