메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
원선희 (숭실대학교) 주성일 (숭실대학교) 최형일 (숭실대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2013년도 대한전자공학회 하계종합학술대회
발행연도
2013.7
수록면
743 - 746 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we exploit the real time sign detection system in subway station for sign recognition that one of the important factors of walking assistance system. This paper suggest the adaptive feature map that can be robustly extract the sign region from complex environment with light and noises. And recognize a sign using fast zernike moment features which is invariant under translation, rotation during walking. We considered three types of signs as arrow, restroom, and exit number and perform the training and recognizing steps through adaboost classifier. The experimental results prove that our method can be suitable and stable for real-time system through yields on the average 87.16% stable detection rate and 20 frame/sec of operation time for three types of signs in 5000 images of sign database.

목차

Abstract
Ⅰ. 서론
Ⅱ. 제안하는 방법
Ⅲ. 실험결과
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002401230