메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hutama Parwananta (National Taiwan University of Science and Technology) Meilinda F. N. Maghfiroh (National Taiwan University of Science and Technology) Vincent F. Yu (National Taiwan University of Science and Technology)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제12권 제3호
발행연도
2013.9
수록면
181 - 189 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a two-phase genetic algorithm (GA) to solve the problem of obtaining an optimum configuration of a paired single row assembly line. We pair two single-row assembly lines due to the shared usage of several workstations, thus obtaining an optimum configuration by considering the material flow of the two rows simultaneously. The problem deals with assigning workstations to a sequence and selecting the best arrangement by looking at the length and width for each workstation. This can be considered as an enhancement of the single row facility layout problem (SRFLP), or the so-called paired SRFLP (PSRFLP). The objective of this PSRFLP is to find an optimal configuration that seeks to minimize the distance traveled by the material handler and even the use of the material
handler itself if this is possible. Real-world applications of such a problem can be found for apparel, shoe, and other manual assembly lines. This research produces the schematic representation solution using the heuristic approach. The crossover and mutation will be utilized using the schematic representation solution to obtain the neighborhood solutions. The first phase of the GA result is recorded to get the best pair. Based on these best matched pairs, the secondphase GA can commence.

목차

ABSTRACT
1. INTRODUCTION
2. PREVIOUS STUDIES
3. PROBLEM DEFINITION
4. PROPOSED METHOD
5. RESULTSAND DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-500-002847963