메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
은성종 (가천대학교) 황보택근 (가천대학교)
저널정보
한국디지털콘텐츠학회 디지털콘텐츠학회논문지 디지털콘텐츠학회논문지 제14권 제2호
발행연도
2013.6
수록면
275 - 282 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
의료 영상처리 분야에서의 일반적인 객체 인식 방법은 픽셀들의 밝기 정보, 형태 정보, 패턴 정보 등 다양한 컴퓨팅 처리 방법으로 수행되어 진다. 그러나 컴퓨팅 방법에 사용되는 다양한 정보들이 의미가 없을 경우 객체인식에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 의료 영상에서의 물리적인 이론에 기반한 영상처리 방법을 전처리에 활용하고자 한다. 제안된 방법은 대비 개선 작업을 주된 목적으로 하는 SWI(Susceptibility Weighted Imaging) 처리를 통해 의미 있는 전처리 작업을 수행하고, 이에 대한 결과를 텍스처 분석을 통해 MR 뇌 영상의 회백질을 효과적으로 검출하는 과정으로 구성된다. 실험결과 제안 방법은 평균 영역차이가 5.2%로 기존의 대표적인 영역분할 방법에 비해 보다 효율적임을 증명하였다.

목차

요약
Abstract
1. 서론
2. 제안 방법
3. 실험결과 및 분석
4. 결론
References

참고문헌 (23)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-560-002753559