메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민기 (경상대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제16권 제9호
발행연도
2013.9
수록면
1,057 - 1,066 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
손가락 관절문(FKP, finger-knuckle-print)을 이용한 개인 인증은 손가락 관절부에 나타나는 주름의 특징을 이용하는 것으로, 텍스처의 방향 정보가 중요한 특징이 된다. 본 논문에서는 SIFT 알고리즘을 이용하여 특징점들을 추출하고, 벡터 유사도 정압을 통해 FKP를 효과적으로 인증할 수 있는 방법을 제안하다. 벡터는 질의 영상에서 추출한 특징점과 이에 대응되는 참조 영상의 특징점을 연결하는 방향 벡터로 정의된다. 국소적인 특징점 쌍으로부터 방향 벡터를 생생하기 때문에 방향 벡터 자체는 국소적인 특징만을 나타내지만, 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교함으로써 전역적인 특정으로 확장되는 장점이 있다. 실험결과 제안하는 방법은 기존의 방향코드를 이용한 다양한 방식에 비하여 우수한 성능을 나타내었다.

목차

요약
ABSTRACT
1. 서론
2. FKP 영상의 전처리
3. 특징점 추출 및 정합 방법
4. 실험 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-002694772