메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김봉수 (중앙대학교) 유성진 (중앙대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제20권 제1호
발행연도
2014.1
수록면
42 - 47 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper investigates an adaptive approximation design problem for the tracking control of output-constrained non-affine pure-feedback systems. To satisfy the desired performance without constraint violation, we employ a barrier Lyapunov function which grows to infinity whenever its argument approaches some limits. The main difficulty in dealing with pure-feedback systems considering output constraints is that the system has a non-affine appearance of the constrained variable to be used as a virtual control. To overcome this difficulty, the implicit function theorem and mean value theorem are exploited to assert the existence of the desired virtual and actual controls. The function approximation technique based on adaptive neural networks is used to estimate the desired control inputs. It is shown that all signals in the closed-loop system are uniformly ultimately bounded.

목차

Abstract
Ⅰ. 서론
Ⅱ. 문제 제기
Ⅲ. 적응 신경망 시스템
Ⅳ. 모의 실험
Ⅴ. 결론
REFERENCES

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001059163