메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
H.S. Park (Ulsan University) Fu-qing Miao (Ulsan University)
저널정보
(사)한국CDE학회 한국CDE학회 국제학술발표 논문집 한국CADCAM학회 2013 ACDDE
발행연도
2013.8
수록면
733 - 743 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Evolutionary algorithms (EA) are a unique and attractive approach to the real world multiobjective optimization design such as a axial flow pump impeller optimization design problem. In this paper, multi-objective evolutionary algorithm to the axial flow pump impeller optimization design is presented. In axial flow pump design process, in order to get high performance pump, designers usually try to increase the efficiency (η) and decrease the required NPSH (NPSHr) simultaneously. In this paper, multi-objective optimization of axial flow pump based on modified evolutionary algorithm Particle Swarm Optimization (MPSO) is performed. At first, the NPSHr and η in a set of axial flow pump are numerically investigated using commercial software ANSYS with the design variables concerning hub angle βh, chord angle βc, cascade solidity of chord σc, maximum thickness of blade H. And then, using the Group Method of Data Handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to design variables are obtained. Finally, multi objective optimization based on modified Particle Swarm Optimization (MPSO) approach is used for Pareto based optimization. The result shows that an optimal solution of the axial flow pump impeller was obtained: NPSHr was decreased by 11.68% and efficiency was increased by 4.24% simultaneously. It means this optimization is feasible.

목차

Abstract
1. Introduction
2. Definition of variables and CFD simulation of axial flow pump
3. Meta-models building using GMDH-type neural network
4 Apply multi-objective optimization by using modified PSO method
5 CONCLUSIONS
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-000939015