메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상락 (비케이앤씨) 장길상 (울산대학교) 조지운 (울산대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제40권 제1호
발행연도
2014.2
수록면
34 - 42 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SCADA and DCS that have performed automatic control and monitoring activities increase the productivity of enterprise in industries. In such systems, although their performance had been improved, there are still many deficiencies in predictive maintenance which can foresee the risk of any kinds of accidents. Because the data acquisition systems of main facilities are being distributed throughout the whole plant and therefore, integration of data obtained from the systems is very difficult. Accordingly, techniques that acquire meaningful information from the gathered data through realtime analysis still need to be improved. This paper introduces a developed facility monitoring system which can predict equipment failure and diagnose facility status through big data analysis to improve equipment efficiency and prevent safety accidents.

목차

1. 서론
2. 적용대상 업무 분석 및 정의
3. 통합 설비 모니터링시스템 설계 및 구현
4. 맺음말
참고문헌

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001128218