메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kento Igarashi, Tetsuo Yamada (The University of Electro-Communications) Masato Inoue (Meiji University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제13권 제1호
발행연도
2014.3
수록면
52 - 66 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Promotion of a closed-loop supply chain requires disassembly systems that recycle end-of-life (EOL) assembled products. To operate the recycling disassembly system, parts selection is environmentally and economically carried out with non-destructive or destructive disassembly, and the recycling rate of the whole EOL product is determined. As the number of disassembled parts increases, the recycling rate basically increases. However, the labor cost also increases and brings lower profit, which is the difference between the recovered material prices and the disassembly costs. On the other hand, since the precedence relationships among disassembly tasks of the product also change with the parts selections, it is also required to optimize allocation of the tasks in designing a disassembly line. In addition, because information is required for such a design, the recycling rate, profit of each part and disassembly task times take precedence among the disassembly tasks. However, it is difficult to obtain that information in advance before collecting the actual EOL product. This study proposes and analyzes an optimal disassembly system design using integer programming with the environmental and economic parts selection (Igarashi et al., 2013), which harmonizes the recycling rate and profit using recyclability evaluation method (REM) developed by Hitachi, Ltd. The first stage involves optimization of environmental and economic parts selection with integer programming with ε constraint, and the second stage involves optimization of the line balancing with integer programming in terms of minimizing the number of stations. The first and second stages are generally and mathematically formulized, and the relationships between them are analyzed in the cases of cell phones, computers and cleaners.

목차

ABSTRACT
1. INTRODUCTION
2. DISASSEMBLY SYSTEM DESIGN PROBLEM WITH ENVIRONMENTAL AND ECONOMIC PARTS SELECTION
3. 2-STAGE OPTIMAL DESIGN OF DISASSEMBLY SYSTEM WITH ENVIRONMENTAL AND ECONOMIC PARTS SELECTION
4. MATHEMATICAL FORMULATION OF 2-STAGE DISASSEMBLY SYSTEM DESIGN WITH ENVIRONMENTAL AND ECONOMIC PARTS SELECTION
5. 2-STAGE OPTIMAL DISASSEMBLY SYSTEM DESIGN WITH ENVIRONMENTAL AND ECONOMIC PARTS SELECTION
6. ANALYSIS OF 2-STAGE OPTIMAL DISASSEMBLY SYSTEM DESIGN WITH ENVIRONMENTAL AND ECONOMIC PARTS SELECTION
7. CONCLUSIONS
REFERENCES

참고문헌 (2)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001379460