메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영준 (한국해양과학기술원) 김태균 (한국해양과학기술원) 이지홍 (충남대학교) 최현택 (한국해양과학기술원)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제51권 3호
발행연도
2014.3
수록면
164 - 173 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
수중 로봇 분야에서 수중 환경 인식은 매우 중요하나, 탁도 등의 제약으로 인하여 수중 광학 카메라의 사용은 제한적이다. 대안으로 기대하는 수중 영상 소나의 경우, 소나 영상의 품질이 영상 처리에 의해 자연물을 그대로 인식하기에 충분히 안정적이며 정확하지 못하다. 이를 극복하고자 본 논문의 Part 1에서 초음파의 특징을 고려한 인공 표식을 제안하였으며, 형상 행렬 기반의 인식 방법을 함께 제안하고 검증하였다. 그러나 실제 해양 환경은 복잡하고 동적인 잡음 요소가 많다. 이러한 문제를 추가로 해결하기위해 본 논문의 Part 2에서는 연속되는 소나 영상에서 확률적으로 인식 후보를 선별하여 인식하고, 추적하는 프레임워크를 제안한다. 이 프레임워크는 4단계, 즉 유사도 기반 관심 후보의 선정, 확률 기반 최종 후보의 선정, 선정된 후보의 인식, 그리고 인식된 물체의 추적으로 구성되어 있다. 이러한 4단계의 구조가 병렬로 처리되어 실시간 처리가 가능하며 인식 대상체의 변경이나 알고리즘의 보강을 위한 유연한 구조를 가진다. 제안한 프레임워크를 구성하는 파티클 필터 기반의 후보 선별 알고리즘과 평균-이동 (mean-shift) 기법에 의한 추적 방법을 함께 제안하였다. 수조 실험과 실해역 실험을 수행을 통하여 성능을 검증하였으며 결과에 대한 상세한 분석을 수행하였다. 인공 표식의 추적에서 얻어진 상대거리, 방향 등의 정보는 수중 로봇의 제어와 항법을 위해 사용될 것으로 기대하고 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0