메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gibak Kim (Soongsil University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEEK Transactions on Smart Processing & Computing Vol.2 No.4
발행연도
2013.8
수록면
197 - 202 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Large gains in speech intelligibility can be obtained using the SNR-based binary mask approach. This approach retains the time-frequency (T-F) units of the mixture signal, where the target signal is stronger than the interference noise (masker) (e.g., SNR > 0 dB), and removes the TF units, where the interfering noise is dominant. This paper introduces two alternative binary masks based on the distortion constraints to improve the speech intelligibility. The distortion constraints are induced by a gain function for estimating the short-time spectral amplitude. One binary mask is designed to retain the speech underestimated T-F units while removing the speech overestimated TF units. The other binary mask is designed to retain the noise overestimated T-F units while removing noise underestimated T-F units. Listening tests with oracle binary masks were conducted to assess the potential of the two binary masks in improving the intelligibility. The results suggested that the two binary masks based on distortion constraints can provide large gains in intelligibility when applied to noise-corrupted speech.

목차

Abstract
1. Introduction
2. SNR-based binary mask
3. Binary mask criteria based on speech/noise constraints
4. Intelligibility listening tests
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001361268