메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국소음진동공학회 소음·진동 소음진동 제4권 제2호
발행연도
1994.6
수록면
221 - 230 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper deals with the dynamic stability and the nonlinear behavior of a check valve system. The nonlinear equations of motion of fluid-valve interation model are derived, which are composed of the unsteady Bernoulli's equation included the jet flow mechanism and equation of motion of a check valve formulated by one degree of freedom. Also, the derived equations of motion are nondimensionalized. According to the change of the nondimensional parameters, the stabilities of the system are analyzed, and the nonlinear interaction responses of the check valve and the passing flow rate are obtained. As the results, the stability charts are constructed for the variation of nondimensional parameters. It is shown that self-excited vibrations exist in a check valve system. And also the Hopf bifurcation and the periodic doubling are found. The presented theoretical model of a check valve system can be utilized to the design and operation of a piping system with the check valve.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0