무기체계 개발에서 예상치 못한 고속의 총탄 충격을 받았을 때 반응 시스템의 폭발 반응을 예측하는 것은 안정성 확보를 위하여 매우 중요하다. 본 연구에서는 LX-17(92.5% TATB, 7.5% Kel-F)과 AP기반의 고체 추진제(88% AP, 12% HTPB)가 충전된 반응 시스템에 한계 속도로 충돌하는 총탄 충격을 가했을 경우 발생하는 폭굉 현상 및 파괴 거동을 I&G 모델이 적용된 2차원 하이드로 수치해석을 통해 규명하고자 하였다. 해석 결과, LX-17의 경우 충격-폭굉 천이 현상(SDT)이 주요한 메커니즘으로 작용한 반면 고체 추진제는 상대적으로 안정한 모습을 보였다. 즉, 시스템의 파괴는 내부 압력의 급격한 증가와 격렬한 화학반응을 동반하는 고에너지 물질의 폭굉 현상이 그 원인이며, 폭발등급이 낮은 경우에는 고속 충돌에도 발화되지 않아 커버가 완전 파쇄에 이르지 않는 것으로 관찰되었다.
Safety of reactive systems is one of the most important research areas in the field of weapon development. A NoGo response or at least a low-order explosion should be ensured to prevent unexpected accidents when the reactive system is impacted by high-velocity projectile. We investigated the shock-induced detonation of cased reactive systems subject to a normal projectile impact to the cylindrical surface based on two-dimensional hydrodynamic simulations using the I&G chemical rate law. Two types of energetic materials, namely LX-17 and AP-based solid propellant, were considered to compare the dynamic responses of the reactive system when subjected to the threshold impact velocity. It was found that shock-to-detonation transition phenomena occurred in the cased LX-17, whereas no full reaction occurred in the propellant.