메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Le Tran Su (University of Ulsan) Jong-Soo Lee (University of Ulsan)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제39권 제5호(통신이론 및 시스템)
발행연도
2014.5
수록면
244 - 250 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Most Serious Engine Faults Are Those That Occur Within The Engine. Traditional Engine Fault Diagnosis Is Highly Dependent On The Engineer"S Technical Skills And Has A High Failure Rate. Neural Networks And Support Vector Machine Were Proposed For Use In A Diagnosis Model. In This Paper, Noisy Sound From Faulty Engines Was Represented By The Mel Frequency Cepstrum Coefficients, Zero Crossing Rate, Mean Square And Fundamental Frequency Features, Are Used In The Hidden Markov Model For Diagnosis. Our Experimental Results Indicate That The Proposed Method Performs The Diagnosis With A High Accuracy Rate Of About 98% For All Eight Fault Types.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Back Ground
Ⅲ. Proposed Method
Ⅳ. Experiment
Ⅴ. Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001574523