메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이소민 (상명대학교) 변성우 (상명대학교) 이석필 (상명대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제63권 제5호
발행연도
2014.5
수록면
696 - 702 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, researches on analyzing relationship between the state of emotion and musical stimuli using EEG are increasing. A selection of feature vectors is very important for the performance of EEG pattern classifiers. This paper proposes a comparison of EEG feature vectors for emotion classification according to music listening. For this, we extract some feature vectors like DAMV, IAV, LPC, LPCC from EEG signals in each class related to music listening and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification according to music listening.

목차

Abstract
1. 서론
2. EEG
3. 특징벡터
4. 실험
5. 결론
References

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001519339