메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ruoyu Wang (South China University of Technology) Ling Zhang (South China University of Technology) Zhen Liu (South China University of Technology)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제3권 제2호
발행연도
2013.4
수록면
112 - 122 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Internet traffic classification is important for network traffic engineering and management. Previous studies have shown that machine learning-based traffic classification methods can obtain high classification accuracy in a static classification context. On the other hand, Internet traffic flows are dynamic, and the classification model needs to be updated at certain intervals. This study first examined the concept drift situation in multi class Internet traffic classification. The classifier obtains high classification accuracy for the majority class over a long period, but looses the classification accuracy for the minority class within a short time. This suggests that concept drift occurs easily in the minority class. To adapt the dynamic classification context, this paper proposes a classification framework based on the concept drift detection method. The experiment results on real traffic datasets showed that the proposed approach can promptly detect concept drift for each class and improve the recall of the minority class while maintaining high overall accuracy.

목차

Abstract
Introduction
Internet traffic datasets and concept drift
Classification framework based PCDD
Experiments
Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002466428