메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Munish Kumar (Panjab University Constituent College) M. K. Jindal (Panjab University Regional Centre) R. K. Sharma (Thapar University)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제3권 제6호
발행연도
2013.12
수록면
397 - 404 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Character recognition is intricate work because of the various writing styles of different individuals. Most of the published work on handwritten character recognition problems deals with statistical features, and a few works deal with structural features, in general, and Gurmukhi script, in particular. In the present work, we propose a methodology for offline handwritten Gurmukhi character recognition by using a modified division points (MDP) feature extraction technique. We also compare this technique with other recently used feature extraction techniques, namely zoning features, diagonal features, directional features, intersection and open end points features, and transition features. To select a representative set of features is the most significant task for a character recognition system. After feature extraction, the classification stage makes use of the features extracted in the previous stage to recognize the character. In this work, we used linear-support vector machines (linear-SVM), k-nearest neighbor (k-NN), and multilayer perceptron (MLP) classifiers for recognition. For experimental analysis, we used 10,500 samples of the isolated, offline, handwritten, basic 35 akhars of Gurmukhi script. The proposed system achieved a maximum recognition accuracy of 84.57%, 85.85% and 89.20% with linear-SVM, MLP and k-NN classifiers, respectively, with a five-fold cross validation technique.

목차

Abstract
Introduction
Related Work
Gurmukhi Script and Data Collection
Digitization and Preprocessing
Proposed Methodology
Classification
Evaluation and Experimental Results
Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002466731