메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaoxu He (University of Science and Technology of China) Chenxi Shao (University of Science and Technology of China) Yan Xiong (University of Science and Technology of China)
저널정보
한국산학기술학회 SmartCR Smart Computing Review 제3권 제4호
발행연도
2013.8
수록면
210 - 219 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data field clustering, which is enlightened by the field in physical space, is one of the new perspectives in clustering. By simulating mutual attraction and opposite movements to group data objects, data field clustering has many advantages compared with other traditional methods. While the implementation of data field clustering has not been complete until now, one of the important problems is that the performance of clustering algorithms greatly depends on the number of initial data objects. Inspired by a key point approximate representation of a time series, we define the key data object and feature set for data fields in this paper, and we propose an algorithm for seeking the key data object based on a sequential quadratic programming (SQP) algorithm. Experimental results show that an SQP algorithm outperforms current competitors, such as the Lagrangian multiplier algorithm, the quadratic programming with constraints algorithm, and the unconstrained programming algorithm in choosing the feature set. Besides, the results verify that the data field from the feature subset can well approach that of the original data set with fewer data objects. This fact can ensure that the performance of the data field clustering algorithm will be significantly improved with a big data set.

목차

Abstract
Introduction
Related Work
The Model for Extracting the Feature Set and Core Object
Experimental Results and Analysis
Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-002466519