메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도래 (한양대학교) 박용수 (한양대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.9
발행연도
2014.9
수록면
707 - 714 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스마트폰 사용자에게 서비스를 제공하기 위해 정상 앱은 특정 개인정보를 외부로 전달하는 행위를 하며, 이러한 정상 앱의 행위는 악성 앱과 행위 측면에서 유사한 면을 지닌다. 즉, 정상 앱을 악의적인 목적으로 일부 조작한다면, 정상 앱은 쉽게 악성 앱으로 변조될 수 있다. 때문에 정상 앱이라 할지라도 개인정보의 유출 가능성을 사용자에게 앱 설치 이전에 경고해서 잠재적인 악의적 행위를 예방하는 것이 중요하다. 본 논문에서는 추출된 API간 상호의존성 정보 내부에서 개인정보 탈취 및 유출 노드사이의 최단거리를 계산하여 개인정보 유출의 가능성을 지닌 의심스러운 일반 앱 탐지 방법을 제안한다. 또한 제안방법을 적용시켜 “LeakDroid”를 구현하였으며, 이를 검증하기 위해 악성 앱 250개와 일반 앱 1700개를 사용하여 실험을 진행하였다. 실험결과 악성 앱은 96.4%의 탐지율을 달성하였고, 일반 앱은 1700개중 실제 68개의 앱에서 개인정보 유출을 의심할 수 있는 흐름을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안방법
4. 실험 및 결과
5. 결론
References

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002591864